Contents

• Introduction to Scheduling with Constraint Programming
• Maintenance scheduling
• Bridge building
Trivial example: Dinner – Looking to CleanUp

Dinner

Prep

Enjoy

CleanUp

Collect

Rinse

Wash

In Cupboard

Sequence

Alternatives

Manual

Washer
Trivial example: Dinner – Looking at preparation

- Prep
 - Jack
 - John
 - Jill
 - Jane

- Enjoy

- CleanUp

Same end time
IBM/ILOG CP Optimizer technology used

- Special modeling constructs for scheduling
- Many years of research on algorithm development
Overview AIMMS scheduling support
1. Mathematical Program

We start with establishing a timeline (scheduleDomain):
- Contiguous subset of Integers
- Calendar, or a contiguous subset thereof

Specified in the Mathematical Program, example:

```plaintext
MathematicalProgram findSchedule { ...
    ScheduleDomain: Ca_Quarters;
}
```
Overview AIMMS scheduling support

2. Activities A. Declaration.

Declaring activities:
1. Which activities are there?
 - indexDomain: (i,j,...) | condition(i,j,...)
 - Property: Optional

2. What do we know about these activities?
 - scheduleDomain attribute, for instance:
 - A. timeline
 - B. { startTimeWindow .. endTimeWindow }
 - Length (and perhaps size), defining constraint, for instance:
 - A. 5
 - B. 3 * requiredNumberUnitsCreated
Overview AIMMS scheduling support

2. Activities B. Suffices and simple constraints

An activity A consists of 5 integer variables represented by suffices:
- A.begin
- A.end
- A.length and A.size
- A.present

These suffices can be used to set up simple constraints such as:
DinnerPrep.End \leq DinnerEnjoy.begin ! Cook before enjoy.
DinnerPrep.End = DinnerPrepPerson(p).end ! Dinner is ready!

An activity A is active from A.begin up to but NOT including A.end
Notation: $[A.begin, A.end)$

Constraint that is implicitly enforced on every activity A:
If A.Present Then
 A.end = A.Begin + A.Length
Endif
Overview AIMMS scheduling support

3. Precedence constraints

Relate two activities on .begin, .end and using ‘=’ or ‘<=’

CP::EndBeforeBegin(prep,enjoy);

Equivalent to:
If prep.present and enjoy.present then
 prep.end <= enjoy.begin
Endif ;

The filtering for these precedence constraints is highly effective.

CP::BeginAtBegin(a,b,d)
CP::BeginAtEnd(a,b,d)
CP::EndAtBegin(a,b,d)
CP::EndAtEnd(a,b,d)
CP::BeginBeforeBegin(a,b,d)
CP::BeginBeforeEnd(a,b,d)
CP::EndBeforeBegin(a,b,d)
CP::EndBeforeEnd(a,b,d)

Only constrain if activities a and b are both present.
AIMMS scheduling support

4. Scheduling constraints

- An activity consists of several sub-activities

\[\text{cp::Span(} g, i, a(i) \text{)} \]

- There are several alternative ways to realize an activity

\[\text{cp::Alternative(} g, i, a(i) \text{)} \]

- Several activities need to take place at the same time:

\[\text{cp::Synchronize(} g, i, a(i) \text{)} \]

Only constrain if activities \(g \) and \(a(i) \) are present.
Overview AIMMS scheduling support

5. Sequential resources

Resources that handle only one activity at a time.
Mandatory Attributes:
- scheduleDomain: timeline
- Activities: ajob, bbox(i), cjob(i,j)|allowedJob(i,j)

Optional Attributes:
- indexDomain: (i,j,...) | condition(i,j,...)

Optional attributes particular to sequential resources
- Transition: (job(i),job(j)) : times(i,j)
- firstActivity: ajob
- lastActivity: bjob('John')
- comesBefore: (ajob, bjob) ! Directly before
- precedes: (ajob,bjob) ! Somewhere before
Demo Maintenance Scheduling

This app:
- One maintenance group available for maintenance
- Large tasks - large time window
- Small tasks - small time window
Overview AIMMS scheduling support

6. Parallel resources

a. Declaration

Resources that handle multiple activities at a time.

Mandatory Attributes:
- scheduleDomain: timeline
- Activities: ajob, bjob(i), cjob(i,j)|allowedJob(i,j)

Optional Attributes:
- indexDomain: (i,j,...) | condition(i,j,...)

Attributes particular to parallel resources
- levelRange: {0..pNumberOfShips}
- initialLevel: ajob
- levelChange: ajob : 1
- beginChange: bjob(i) : 1
- endChange: cjob(i,j): 2
Overview AIMMS scheduling support
6. Parallel resources b. Pulses

Level change or pulse
.Amount
.Begin .End

Begin change
.Amount
.Begin .End

End change
.Amount
.Begin .End
Overview AIMMS scheduling support

7. Difference .length and .size

Activities and resources may not be available every time slot.

For instance, human workers prefer to have weekends off.

Length does not suffice to measure amount of work done.

An activity A is active on timeslot t if
 t is in scheduleDomain of A
And
 t is in scheduleDomain of resource R,
 for every R on which A is scheduled.

For every activity A, we define A.size as
the number of active timeslots in the range [A.begin,A.end)

Implicit constraint:
If a.present then
 a.size <= a.length
Endif
Demo Bridge Building

Build a bridge
• several components to be placed,
• several tools to be used.
Interesting:
- Activity
- Constraint
- Parallel Resource
- Gantt Chart
Next webinar

- ?.
- ?
- October 2015
Questions?
Scheduling example

4 non overlapping activities A, B, C, D; each length 1, D comes last

Precedes(A, D)
Precedes(B, D)
Precedes(C, D)
NoOverlap(A, B, C, D)

From the above, scheduling engines can conclude begin of D ≥ 3.
Introduction to sequential resources

- **Purpose:** Scheduling sequences of activities
- **Example:**

```plaintext
Resource res {
    Usage: sequential;
    ScheduleDomain: TimeLine;
    Activities: Act(j);
    Transition: (act(j), act(k)) : ChgOver(j, k);
}
```